Step of Proof: iff_imp_equal_bool
9,38
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
iff
imp
equal
bool
:
1. True
False
2. True
False
tt = ff
latex
by ((D 1)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok
C
:t) inil_term)))
latex
C
.
Definitions
t
T
,
True
,
False
,
P
Q
origin